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Hamiltonian formulation for the diffusion equation
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A Hamiltonian formulation is presented for the diffusion equation. Going beyond the conservation of
property in diffusive transport, conservation is shown to apply in the sense of classical Hamiltonian dynamics,
provided the equation is transformed with Hermitian wavelets. The characteristic equations, obtained previ-
ously for the wavelet-transformed diffusion equation, are the canonical equations corresponding to a time-
independent Hamiltonian. The configuration variables are defined by the canonical structure and its invariants,
while the momenta determine the evolution of the system. Irreversibility results from the finite-time escape of
trajectories, initiating from the smallest scales and eroding increasingly larger scales. However, this scale-
dependent erosion of initial conditions does not necessarily imply memory loss.@S1063-651X~97!02902-4#

PACS number~s!: 66.10.Cb
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I. INTRODUCTION

Formulations of diffusive problems come in several c
egories. The variational approach introduces adjoint fields
in @1–3#, and is suitable for computational purposes@4#. The
physical meaning of these formulations is more limited th
in the canonical theories, which can be divided into a cla
cal treatment of inviscid flows@3# and a bracket formalism
@5,6# that includes dissipative dynamics.

The approach developed here represents an alternativ
tion. To quote Salmon@3# ‘‘Just as any non-Euclidean man
fold can be made Euclidean by embedding it in a hig
dimensional space, any non-Hamiltonian dynamics can
made Hamiltonian . . . . ’’ He wasreferring to the addition of
the adjunct field, but his remark could preface the introd
tion of the higher-dimensional wavelet space used here.

Several previous results by the present author were po
ing in the general direction of conservative systems, w
continuous Hermitian wavelet transforms@7,8# of the diffu-
sion equation as the critical first step. A brief summary
relevant equations is presented in Appendix A. In@9#, it was
shown that the transformed equation admits characteris
implying that information propagates in the field in a reco
nizable way. The existence of characteristics is specific
Hermitian wavelet transforms and goes beyond the class
integral representation@10# or the use of Green’s function
@11#. In @12# ~see Appendix D!, rescaled Hermitian wavelet
were actually shown to be the Green’s propagators for so
fields and initial and boundary conditions. In@13#, the vari-
ance of the diffusing property was also shown to be c
served~in the sense that the energy loss occurs by visc
transport rather than by dissipation! if the first-order Hermit-
ian wavelet is used.

Thus, it was apparent that Hermitian wavelets capture
dynamics of diffusion in a privileged manner, and this pap
adds to the evidence. Starting with one-dimensional~1D!
diffusion, the Hamiltonian is constructed in Sec. II, and t
canonical equations are solved. Section III is devoted to
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invariants of the process. In Sec. IV, the Legendre transfo
is used to construct a Lagrangian and the Hamilton-Jac
equation is spelled out. The results are generalized
N-dimensional diffusion in Sec. V. A discussion and an
terpretation follow in Sec. VI, including a reference
strongly nonlinear systems.

II. HAMILTONIAN FOR 1D DIFFUSION

Let us denote byu8 the field of interest and byu its
wavelet transform~see Appendix A for definitions and nota
tions!. In @9#, the diffusion equation

]u8

]t
5n

]2u8

]x2
~1!

was transformed into the first-order wave equation

]u

]t
1nk3

]u

]k
1nk2S n1

1

2Du50. ~2!

The wavelet numberk is a measure of inverse length sca
analogous to the wave number of Fourier analysis and e
to the inverse dilation factora used in the wavelet literature
Following Courant and Hilbert@14#, three of the correspond
ing characteristic equations~with a timelike parameters)
take the form

dt

ds
51, ~3!

dk

ds
5nk3, ~4!

and

du

ds
52nk2S n1

1

2Du. ~5!

The propagation of initial conditions along characteris
lines implies a form of conservation that is consistent w
non-dissipative mechanics.@If we imagine the relaxation of
an initial bump, the bump retains its identity as it spreads a
flattens out with constant area under the curve. The cha
1590 © 1997 The American Physical Society
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55 1591HAMILTONIAN FORMULATION FOR THE . . .
teristic equations~4! and~5! track the spreading and the fla
tening. The conservative nature of the diffusive transpor
velocity, vorticity, and other concentration, contrasted w
the dissipation of energy, enstrophy, or variance of conc
tration, is emphasized in many textbooks.# From this per-
spective, a Hamiltonian can be sought. The construction
cedure~see Appendix B and@15#! applicable to first-order
partial differential equations relies on the interpretation
certain variables as being configuration variables or their
sociated momenta. This is invalidated by the eventual ob
vation that the Hamiltonian cannot be a bilinear function
the momenta and that consequentlyk and u must be the
momenta. To that extent, the discovery of the Hamiltonia

H~K,U,k,u!5nk3K2~n1 1
2 !nk2uU ~6!

is serendipitous and is justified only by the consistency of
analytical structure built on it. We note that the Hamiltoni
is constant in time and is homogeneous of degree 3 in
momenta and of degree 1~in fact bilinear! in the configura-
tion variables.

A. Momenta

Two of the canonical equations

dk

dt
5

]H

]K
5nk3 ~7!

and

du

dt
5

]H

]U
52nS n1

1

2Dk2u ~8!

are the characteristic equations~4! and ~5!. We denote
k05k(0) andu05u(x,0). Integration as in@9# yields, re-
spectively,

k~ t !5
k0

A122nk0
2t

~9!

and

u~x,t !5u0~122nk0
2t !n/211/45u0S k0

k~ t ! D
~n11/2!

. ~10!

The solutions are shown on Figs. 1 and 2. We see that
any given initial scalek0, k(t) becomes arbitrarily large in a
finite time

tc~k0!51/~2nk0
2! ~11!

and that the correspondingu vanishes at that time. This oc
curs gradually for larger and larger scale components of
initial conditions. Furthermore, the time dependence ofu is
entirely captured by the relation

u~x,t !5y„x,k~ t !…, ~12!

in agreement with our initial point of view thatu, the wave-
let transform of a fieldu8(x,t), is a function ofk andx. The
slope of the evolution lines~Fig. 2! corresponds to the as
f

n-

o-

f
s-
r-
f

e

e

or

e

ymptotic slope for the Hermitian wavelet transform of a
function, as illustrated by theg2 ~Mexican hat! transform of
y5eiax:

y~k,x!52A2pk25/2a2eiaxe2a2/2k2. ~13!

As thek2n21/2 asymptote holds regardless ofa, it also holds
for any Fourier-expandable field. It should be noted that
evolutions shown on Figs. 2 and 3 are representative of
wavelet coefficients at each spatial location rather than o
mean power spectrum. The diffusion of a given field is no
represented by the ‘‘flow’’ initiating from its continuou
spectrum of wavelet coefficients at eachx.

B. Irreversibility, selective memory, and reconstruction
of the past

Further interpretation of Fig. 2 shows that, at timetc , all
initial spectral contributions at wavelet numbe
k>kc51/A2ntc have vanished. The large-k portion of the

FIG. 1. Evolution ofk.

FIG. 2. Mapping~dotted lines! of initial momenta~solid line! to
some future timetc ~dashed line!; small scale~dashed line, large
k) initial conditions are forgotten after a finite time, but can
reconstructed by analytical continuation, as explained in the te
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1592 55JACQUES LEWALLE
spectrum has been repopulated by propagation of
smaller-k initial conditions, with the values ofk initially just
smaller thankc contributing to the asymptotic tail. At all
times, we keep a continuous spectrum with 0,k,`. How-
ever, because of the scale-dependent attenuation descr
by Eq. ~10!, the dominant scale~e.g., corresponding to the
top of the spectral curve at each spatial location! will gradu-
ally shift to smaller and smallerk.

If we reverse the direction of time, only the ‘‘initial’’
values~solid line on Fig. 2! for k,kc are recovered sponta-
neously. We can interpret this as a form of irreversibility, b
which one cycle of evolution and reverse evolution results
a truncation of the initial conditions. However, successiv
cycles of equal or shorter duration will not lead to furthe
erosion of the initial field: irreversibility takes the form of a
one-time escape for each initial scale, equivalent to t
abrupt truncation of the initial conditions surviving beyond
given time.

In spite of this intrinsic irreversibility, the actual memory
of the small-scale initial conditions~dashed line! is not lost.
A reasonable extrapolation seems possible graphically;
deed, the extrapolation to largerk ’s can be carried out by
analytic continuation if all differentiability and convergenc
criteria are met in the following. Let us use the transform
the Fourier mode@Eq. ~13!#. A Taylor series ofu(k,x)
aroundk1,kc in terms ofz2z15 lnk2lnk1 gives

FIG. 3. Trajectories corresponding to the same initial conditio
as in Fig. 2, based onu0U051 and~a! k0K051 and~b! Eq. ~19!.
The trajectories issuing from the dashed line~small scale, large
k0) escape to infinity before timetc ; those issuing from the curved
solid line generate the dotted time line.
e

bed

n
e

e

n-

f

ln@u~z,x!#5(
j50

`
1

j !
~z2z1!

j
] j lnu

]z1
j

5 ln@u~z1 ,x!#1(
j51

`
1

j !
~z2z1!

j

3
] j21

]z1
j21 S a2e22z12

5

2D
5 ln@u~z1 ,x!#2

5

2
~z2z1!

1(
j51

`
1

j !
~22! j21~z2z1!

ja2e22z1

5 ln@u~z1 ,x!#2
5

2
~z2z1!

2
a2

2
e22z1(

j51

`
1

j !
~22! j21~z2z1!

j

5 ln@u~z1 ,x!#2
5

2
lnS k

k1
D 2

a2

2
~e22z12e22z!

5 ln@u~z1 ,x!#2
5

2
lnS k

k1
D 1

a2

2 S 1k1
2 2

1

k2D ,
~14!

which restores all truncated scales. By superposition of F
rier components, this algorithm can be implemented on
given field. This is consistent with the classical Four
analysis of the diffusion equation, in which the sca
dependent exponential attenuation can be reversed.

C. Trajectories

The second pair of canonical equations

dK

dt
52

]H

]k
523nk2K12S n1

1

2D nkuU ~15!

and

dU

dt
52

]H

]u
5S n1

1

2D nk2U ~16!

are the equations for the trajectories. Substitution of Eqs.~9!
and ~10! and integration make a simple excercise. We
first

U5U0

u0
u
. ~17!

This shows that the productUu is constant, implying that as
u relaxes toward zero in a finite timetc according to Eq.
~10!, U becomes ever larger. Furthermore, Eq.~15! yields

K5K0H F12S n1
1

2D u0U0

k0K0
G S k0

k~ t ! D
3

1S n1
1

2D u0U0

k0K0

k0

k~ t ! J ,
~18!

so thatK collapses to the origin after timetc . Accordingly,
the trajectories for the diffusion problem escape to infinity

s



nd

b

am

th

es
he

oi
th

to
q
-
n

ce
un
ss
p
a
t

t
fit

ca

n,

s

nal

ons

f a
es

e

-
is
let-
n

55 1593HAMILTONIAN FORMULATION FOR THE . . .
U at vanishingK ’s, while the momenta escape to larger a
largerk ’s at vanishingu’s, all in finite time.

The selection of any~nonsingular! origin (K0U0) of tra-
jectories should not affect the solution of the diffusion pro
lem as presented in Sec. II.A. With regard to Eq.~17!, there
is therefore no loss of generality to assume that the s
value ofu0U0 is used for all trajectories. For Eq.~18!, two
simplifying options impose themselves: we can assume
the samek0K0 applies to all trajectories, yielding Fig. 3~a!,
or that the particular value

K05S n1
1

2D u0U0

k0
~19!

is adopted as for Fig. 3~b!. In this latter instance,K(t) be-
comes inversely proportional tok(t) and the Hamiltonian
@Eq. ~6!# vanishes~up to an arbitrary constant!. Clearly, the
mapping of the trajectories is quantitatively affected by th
choices, but without any effect on their topology or on t
diffusion itself.

III. INVARIANTS

Several invariants can be noted. First, it is clear that

I 15H ~20!

remains constant during the process. Specifically, the ch
of the configuration variables discussed at the end of
preceding subsection will fix the value ofH for each trajec-
tory. In general, this constant can vary from trajectory
trajectory, i.e., bek dependent; the particular case of E
~19! leads to a uniformH for all trajectories. A second in
variant is found from the balance between the increase ik
and the decrease inu, in the form

I 25u~ t !k~ t !n11/2. ~21!

A third invariant is

I 35u~ t !U~ t !. ~22!

The interpretation ofI 2 is easiest: it expresses the balan
between the spreading and the magnitude of a ‘‘bump’’
der diffusion and can be read as an expression of ‘‘ma
conservation.I 3 makesu andU reciprocals of each other, u
to a proportionality constant, and we will see in Sec. VI th
it can be interpreted as a definition ofU. It can be noted tha
Eq. ~18! can be obtained directly from Eq.~6! as well as by
integration of Eq.~15! and will not yield an independen
invariant. A fuller discussion of the invariants will bene
from theN-dimensional results~Sec. V! and is delayed until
Sec. VI.

IV. VARIATIONAL FORMULATION

The variational formulation associated with the canoni
equations~7!, ~8!, ~15!, and~16! follows from the construc-
tion of an associated LagrangianL. Let us define

L~K,U,K̇,U̇ !5k
]H

]k
1u

]H

]u
2H, ~23!
-

e

at

e

ce
e

.

-
’’

t

l

in which the original momentak and u are expressed in
terms ofK, K̇, U, andU̇. The Jacobian of the transformatio

J5detS ]2H

]p i]p j
D524S n1

1

2D n2k2U2, ~24!

does not vanish by virtue of Eqs.~17! and ~9! until each
trajectory escapes at its owntc .

From Eqs.~15! and ~16!, it is easy to show that

k~K,U,K̇,U̇ !5S 1

n~n1 1
2 !

U̇

U D 1/2 ~25!

and

u~K,U,K̇,U̇ !5

K̇1
3

~n1 1
2!

KU̇

U

2A~n1 1
2
!nUU̇

. ~26!

Substitution into Eq.~23! shows that the Lagrangian take
the form

L~K,U,K̇,U̇ !52
U̇2K1~n1 1

2 !UU̇K̇

An@~n1 1
2 !U#3/2AU̇

52H„K,U,k~K,U,K̇,U̇ !,u~K,U,K̇,U̇ !….

~27!

The LagrangianL is homogeneous of degree2 1
2 in the con-

figuration variables and of degree32 in their derivatives.
When this Lagrangian is associated with the variatio
problem

dE Ldt50, ~28!

it is staighforward to show that the Euler-Lagrange equati
are identical to the characteristic equations~4! and~5! and to
the canonical equations~7! and ~8!.

Finally, the diffusion equation can be cast in the form o
Hamilton-Jacobi equation, following well-known procedur
@15#. From Eq.~6!, we obtain

]S

]t
1HSK,U, ]S

]K
,

]S

]U D
5

]S

]t
1nKS ]S

]K D 32S n1
1

2D nUS ]S

]K D 2]S

]U
50. ~29!

It is well known @15# that * t1
t2Ldt is the geodesic distanc

between surfaces of constantS5S1 andS2.

V. THE N-DIMENSIONAL DIFFUSION EQUATION

Because the scaling factorsk j are not endowed with vec
tor transformation properties, the summation convention
suspended in the remainder of this paper. The wave
transformed N-dimensional diffusion equation of a
M -component fieldui takes the form
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]ui
]t

1n(
j

k j
3]ui
]k j

1n(
j

k j
2S n1

1

2Dui50, ~30!

analogous to Eq.~2!. The present author knows of no sy
tematic procedure to generate theN-dimensional Hamil-
tonian. However, with the requirement that the characteri
equations corresponding to Eq.~30! ~see@9#! should be ob-
tained among the canonical equations, the generalizatio
easy. We propose

H~Kk ,Ui ,kk ,ui !5(
k

Fnkk
3Kk2S n1

1

2D nkk
2(

i
uiUi G

5(
k
Hk . ~31!

H is a Hamiltonian in the sense that the canonical equat

dui
dt

5
]H

]Ui
52nS n1

1

2Dui(k kk
2 ~32!

and

dk j

dt
5

]H

]Kj
5nk j

3 ~33!

are the characteristic equations forN-dimensional diffusion.
The definition of the ‘‘configuration variables’’Ui andKj is
found in the other pair of canonical equations

dKj

dt
52

]H

]k j
523nk j

2Kj12S n1
1

2D nk j(
i
uiUi ~34!

and

dUi

dt
52

]H

]ui
5S n1

1

2D nUi(
k

kk
2 . ~35!

Again the trajectories can be obtained by integration.
have

k j~ t !5k j0~122nk j0
2 t !21/2, ~36!

ui5ui0)
j

~122nk j0
2 t !n/211/45ui0)

j
S k j0

k j~ t !
D n11/2

,

~37!

Ui5Ui0

ui0
ui

, ~38!

and

Kj5FKj02S n1
1

2D ( iui0Ui0

k j0
G S k j0

k j~ t !
D 31S n1

1

2D ( iui0Ui0

k j~ t !
.

~39!

The invariants generalize those listed in Sec. III. Ob
ously, H is an invariant, but in fact each of theHk’s is
conserved independently. Indeed,
ic

is

ns

e

-

]H

]Km
5dmk

]Hk

]Km
, ~40!

with similar expressions forkm derivatives, so that the Pois
son bracket ofH andHk vanishes,

@H,Hk#5(
m

]H

]Km

]Hk

]km
1(

i

]H

]Ui

]Hk

]ui
2(

m

]H

]km

]Hk

]Km

2(
i

]H

]ui

]Hk

]Ui

5(
m

dkm

dt
dmkS 2

dKm

dt D1(
i

dui
dt

3@2n~n11/2!kk
2Ui #2(

m
S 2

dKm

dt D dmk

dkm

dt

2(
i

S 2
dUi

dt D @2n~n11/2!kk
2ui #

50, ~41!

when the odd symmetry of Eqs.~32! and ~34! is taken into
account. This yieldsN invariants of the type

I 1k5Hk . ~42!

The ‘‘conservation equation’’ corresponding toI 2,

I 2i5ui~ t !)
j

k j~ t !
n11/2 ~43!

holds for each componenti , but combines all spatial direc
tions, consistently with our interpretation. Finally,

I 3i5ui~ t !Ui~ t ! ~44!

also holds for each component separately. A straightforw
extension of Eq.~23!, theN-dimensional Lagrangian is de
fined as

L~K8s,Ui ,K̇8s,U̇ i !

5(
k

kk

]H

]kk
1(

i
ui

]H

]ui
2H

52H„K8s,Ui ,k8s~K8s,Uj ,K̇8s,U̇ j !,

ui~K8s,Uj ,K̇8s,U̇ j !… ~45!

and a matching Hamilton-Jacobi equation, not spelled
here, follows naturally.

VI. DISCUSSION

In this paper, the diffusion equation is reformulated w
the combination of purely classical techniques: canon
formalism, theory of first-order partial differential equation
method of characteristics, variational formulations, harmo
analysis, and its latest addition, wavelet transform. The
to the canonical formulation of the diffusion problem lies
the continuous Hermitian wavelet transform, which captu
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55 1595HAMILTONIAN FORMULATION FOR THE . . .
the phenomenon in a different~arguably simpler! way.
The combined spatial and spectral discrimination p

formed by the wavelet transform in Eq.~A2! rearranges the
physics of diffusion in such a way that the scale-depend
local dynamics become conservative and correspond
strict variational problem. The conservative nature of
system can be traced to the existence of characteristics,
a consequence of the compatibility relation@Eq. ~A3!#, and is
conceptually related to the Green’s function propagation
initial conditions: both artifacts of the wavelet transform
tion. The space variablex, although part of the wavelet spac
and implied in all wavelet-transformed equations, plays o
the role of a parameter in the absence of convective effe

Elementary dimensional considerations are in order. Si
the diffusion equation is linear,u8 can stand for any of the
temperature, velocity, or concentration fields encountere
many problems; let us denote its dimensions byD. Then it
follows from Eq. ~A2! that u has dimensionsDL21/2. Re-
gardless of the particular field at hand, the diffusion coe
cient n has dimensionsL2T21. Then, in order to have a
dimensionally consistent HamiltonianH in Eq. ~6!, K must
have dimensionsL inverse of those ofk, andU have dimen-
sionsL1/2D21 inverse of those ofu, except for an arbitrary
dimensional factor common to bothK andU. Taking every-
thing into account, assuming this common factor to be
mensionless,H has the same dimensions as the groupnk2,
i.e., T21. This is consistent with the Hamilton-Jacobi equ
tion ~29! when the Jacobi functionS is dimensionless. There
fore,H emerges as the evolution operator familiar from cl
sical and quantum mechanics.

The physical meaning of the Hamiltonian can be det
mined in conjunction with the invariants of the process. F
clarity, one can emphasize first that the Hamiltonian defin
by Eq. ~31! is not of ‘‘energy’’ type and is unrelated to
Salmon’s cases of diffusive motion@3#, the dissipative
bracket formalism@5,6#, or the conservation of energy und
g1 transform@13#. Among the invariants, theM I 2i ’s can be
interpreted as the conservation of ‘‘mass’’ under diffusi
transport, a well-established idea. The other invariants o
the following pattern: we haveN I1k’s, from which theK ’s
can be obtained~as well as from their respective differenti
equations! and theM I 3i ’s are simple algebraic relation be
tween the configuration variables~theU ’s! and the momenta
~theu’s! appearing in relation to the original problem. Thu
in numbers and analytical content, theI 1k and I 3i invariants
can be interpreted asdefinitionrelations for the configuration
variables, just as Eqs.~35! and ~36!, from which they were
derived, were regarded as definition equations for the s
variables. One can note that the definitions themselves
part of the Hamiltonian structure, so that the configurat
variablesU andK are fundamentally different from the ad
joint variables in the restricted variational approaches
@2,1,16,17# and others mentioned in@3#. This explains why
only the equations for the momenta are needed to solve
diffusion equation: the configuration variables play no d
namical role other than completing the canonical structu

Within the Hamiltonian structure, a peculiar form of irre
versibility was discoverd in Sec. II. The decomposition
the field by continuous Hermitian wavelets corresponds t
scale-dependent escape time. As noted in Sec. II, the gra
scale-dependent erosion of the initial conditions does not
-
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ply a memory loss, as long as the field is sufficiently smoo
For the diffusion equation studied in this paper, the a

vantages of a Hamiltonian formulation are conceptual rat
than computational. Many effective methods exist to so
the diffusion problem, and the doubling of independent va
ables associated with the wavelet transform hardly goe
the direction of increased economy of calculation. Howev
at the conceptual level, a number of surprises are notew
thy: the definition of a configuration spaceK-U in which the
canonical formulation is valid, the formal manipulations a
sociated with a simplectic structure, and the emergence
the Hamiltonian as an evolution operator for diffusion, bo
in the deterministic sense~Hamilton-Jacobi! and in the sta-
tistical sense~see, e.g.,@18#!, all enrich our knowledge of a
classical problem.

Finally, the strong focus on linear diffusion adopted
this paper should not be perceived as an exclusion of str
nonlinearities. Hamiltonians for the Burgers equation and
Navier-Stokes equations are discussed in Appendix C
are the object of continuing work. The hope there is that
organization of turbulent flows around coherent structu
might emerge in the newly defined phase space. Obviou
the complexities of the convolutions in wavelet space pres
difficulties of their own, but the existence of tools~e.g.
renormalization applied to critical pheonmena! making use
of Hamiltonians for complex systems offers some hope
success. In conclusion, we have derived a consistent fra
work in which to study diffusive processes.
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APPENDIX A: HERMITIAN WAVELET TRANSFORMS

It was shown by Meneveau@19# that the wavelet transfor
mation~see@7,8#! can be applied to the Navier-Stokes equ
tions. Then, the present author@9# made further progress b
using Hermitian wavelets, i.e., wavelets obtained recursiv
as derivatives of the Gaussian bell curveg0:

gn~z!52
d

dz
gn21~z! where g0~z!5e2z2/2. ~A1!

For n.0, the Hermitian wavelet transform at scalek of a
velocity u(x) follows from the general definition and read

u~k,x!5k1/2E
2`

`

u8~y!gn„k~y2x!…dy. ~A2!

(k,x) will be referred to as wavelet space andk (.0) as the
wavelet number. Integration by parts and the Hermite rec
sion relations yield the compatibility equation

k3
]u

]k
1

]2u

]x2
1S n1

1

2Dk2u50, ~A3!
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which removes some of the redundancy associated with d
bling the number of independent variables.

The properties of the transform used in the previous s
tions can be generalized toN dimensions if the transform is
carried out in each Cartesian direction independently an
the same wavelet indexn applies in each direction. Accord
ingly, theN-dimensional wavelet transform of the veloci
field ui(x) is

ui~k8s,x,t !5E •••E
2`

`

ui8~y,t !

3)
j51

N

@k j
1/2gn„k j~yj2xj !…dyj #. ~A4!

It can be noted thatk j is a set of positive scaling coefficien
and is not a vector. This fact is reflected in the notati
wherek will be avoided, and where the summation conve
tion does not apply tok j . TheN-dimensional compatibility
equation assumes the form

(
j

k j
3 ]ui

]k
1(

j

]2ui
]xj

2 1S n1
1

2D(j k j
2ui50. ~A5!

APPENDIX B: CONSTRUCTION OF THE HAMILTONIAN

The construction of a Hamiltonian for diffusion follow
the general presentation of Rund~see@15#, pp. 60–63!. As-
sume that the solution is implicitly given by a relation of th
form

z„t,k,u~ t,k!…50. ~B1!

Then define the variables

T5
]z

]t
, ~B2!

K5
]z

]k
, ~B3!

and

U5
]z

]u
. ~B4!

Let

H~K,U,T,k,u,t !52UFS t,k,u,2 T

U
,2

K

U D . ~B5!

Rund shows thatH is a Hamiltonian for some timelike pa
rametert. In the case of Eq.~2!, we obtain

H~K,U,T,k,u,t !5T1nk3K2S n1
1

2D nk2uU. ~B6!

Two of the canonical equations, namely,

dt

dt
5

]H

]T
51 ~B7!

and

dT

dt
52

]H

]t
50, ~B8!
u-

c-

if

,
-

make it clear thatt can be adopted as the independent
rameter. Then, the Hamiltonian reduces to Eq.~6!

APPENDIX C: EXTENSION TO NONLINEAR PROBLEMS

Whatever simplifications wavelets can bring to line
problems do not extend to nonlinearities. The convolution
quadratic terms has been studied in@19,9# and presents defi
nite disadvantages relative to the Fourier decomposition,
ticularly in the treatment of pressure in incompressible flow
These disadvantages may be offset by the existence
canonical structure, and this appendix shows that a Ha
tonian formulation of nonlinear dissipative systems is p
sible.

As in @9#, the Burgers equation

]u8

]t
1u8

]u8

]x
5n

]2u8

]x2
~C1!

provides a good stepping stone toward the Navier-Sto
equations if the nonlinear terms are treated as source te
The convolution is greatly simplified if the Hermitian wave
let is of even order, in which case the simplifying express
holds for the inverse transform:

u8~x,t !5gE
0

`

k21/2u~k,x,t !dk, ~C2!

where

g5S 2
1

2D
n/2 1

A2p

1

G~n!
. ~C3!

Then we can write

u82~x,t !5g2E
0

`E
0

`

~k1k2!
21/2u~k1 ,x,t !u~k2 ,x,t !dk1dk2

5C~x,t !, ~C4!

so that the convolutionC combines contributions from al
scales at each location. Upon wavelet transformation,
characteristic equation~7! remains unchanged and th
wavelet-transformed nonlinear terms must be added to
right-hand side of Eq.~8!, which is replaced by

du

dt
5

]H

]U
52nS n1

1

2D k2u

2
1

2

]

]xS E0`dkC~x,t !k1/2gn„k~y2x!…D . ~C5!

Therefore, when we write the Hamiltonian as

H~K,U,k,u!5nk3K2US n1
1

2D nk2ũ

2
U

2

]

]xS E0`dkC~x,t !k1/2gn„k~y2x!…D ,
~C6!

the first pair of canonical equations gives Eqs.~7! and~C5!,
so that the Burgers equation is derived fromH. For the as-
sociated configuration variablesK and U, defined by the
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other pair of canonical equations, it is not clear how thek
and u derivatives should be carried out. This issue will
examined elsewhere. Regardless of how it is resolved,
Hamiltonian now includes nonlocal contributions, spann
all k ’s and a corresponding window of nearbyx’s, which
makes a variational formulation unlikely.

No new complications are introduced by considering
incompressible Navier-Stokes equations. Let us define

Ci j8 ~x,t !5ui8~x,t !uj8~x,t !

5g6E
0

`

•••E
0

`

)
k

@dk1kdk2k~k1kk2k!
21/2#

3ui~k18s,x,t !uj~k28s,x,t ! ~C7!

and its wavelet transform

Ci j ~k8s,x,t !5E
2`

`

•••E
2`

`

Ci j8

3)
k

@dykkk
1/2gn„kk~yk2xk!…#. ~C8!

With these notations, the wavelet-transformed pressure
@9# associated with the velocity derivatives can be rewrit
as

p

r
52(

j
(
m

]

]xm

]

]xj
E

2`

0

dsCjm„kk~s!,x,t…

3)
k

~122skk
2!n/211/4 ~C9!

and the characteristic equation for velocityui becomes

dui
ds

52nS n1
1

2Dui(k kk
22

1

r

]p

]xi
2(

j

]

]xj
Ci j .

~C10!

With these expressions, the Hamiltonian governing Newt
ian incompressible flows is

H~K8s,Ui ,k8s,ui !

5n(
k

kk
3Kk2S n1

1

2D n(
i
Uiui(

k
kk
2

2(
i

(
j
Ui

]

]xj
Ci j2(

i
(
j

(
m

Ui

]

]xi

]

]xm

]

]xj

3E
2`

0

dsCjm„kk~s!,x,t…)
k

~122skk
2!n/211/4.

~C11!

Starting from Eq. ~C11!, the charactersitic form of the
Navier-Stokes equations can be derived as one pair of
nonical equations. As in the case of the Burgers equation
definition of the configuration variables remains to be elu
dated.
e
g

e

ld
n

-

a-
he
-

APPENDIX D: HERMITIAN WAVELETS
AS GREEN’S FUNCTIONS

Another profound relation between Hermitian wavele
and the diffusion equation is illustrated here~This material
was presented as part of@12#.! In the presence of a sourc
field, the diffusion equation takes the form

] f

]t
2n

]2f

]xi
2 5F rhs. ~D1!

The field f (x,t) is determined by a combination of the sour
field F rhs and suitable boundary and initial conditions. Th
Green’s-function formalism@11# captures concisely this de
pendence:

f ~x,t !5E
t0

t1

dt0E dV0G
d~x,tux0 ,t0!F rhs~x0 ,t0!

1E dV0G
d~x,tux0,0! f 0~x0,0!1nE

t0

t1

dt0

3 R dA0•@G
d¹0f ~x0 ,t0!2 f ~x0 ,t0!¹0G

d#

5E Gd~x,tux0 ,t0!c~x0 ,t0!5Gd+c , ~D2!

wherec stands indifferently for sources or initial or bound
ary conditions, andGd is used as the integration kernel or th
integral operator.

Let us focus on one-dimensional diffusion first. In an i
finite domain, the functionGd is

Gd~x,tux0 ,t0!

5H~ t2t0!
1

A4pn~ t2t0!
expF2S ~x2x0!

2

4n~ t2t0!
D G

5H~ t2t0!
kn

A2p
expF2S kn

2~x2x0!
2

2 D G ~D3!

when we define a time-dependent inverse length scalekn as

kn5@2n~ t2t0!#
21/2. ~D4!

The Green’s function is thus identical~for t.t0) to the ‘‘ba-
sic solution’’ as presented in Widder@10#. Furthermore,
Widder’s presentation of differentiation, integration and co
volution of the basic solution established the link betwe
the Gaussian bell curve and the Hermite functions, and
diffusion equation.

This appendix goes one step further, by showing that fo
~multiscale! resolution of the field in terms of Hermitian
wavelets, the same family of wavelets serves as functio
basis, as convolution kernel,and as Green’s function. The
wavelet transformation is defined for real wavelets such
gn by the equation@9#

f n~k,x,t !5Wn~k!+ f ~x,t !5E
2`

`

f ~y,t !k1/2gn„k~y2x!…dy.

~D5!
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Because of the existence of an inverse transform~see@7#!,
the f n’s can be interpreted as a local spectral decomposi
of the field f . The wavelet transform is now applied to th
solution given by Eq.~D2!. It is straightforward to verify that

Wn~k!+ f ~x,t !5Wn~k!+E Gd~x,tux0 ,t0!c~x0 ,t0!

5E @Wn~k!+Gd~x,tux0 ,t0!#c~x0 ,t0!

5@Wn~k!+Gd#+c5Gn
d~k!+c. ~D6!

The propagatorGn
d in the transformed space is defined

Eq.~D6!, and is calculated to be

Gn
d~k!5Wn~k!+ Gd5H~ t2t0!S kn*

k D n11/2

Wn~kn* !,

~D7!

with

kn*5
kkn

Ak21kn
2
5

k

A112nk2~ t2t0!
. ~D8!

Therefore, we see that the solution of the diffusion probl
is a rescaled wavelet transform of the source field and of
initial and boundary conditions.

TheN-dimensional result can be obtained also by a d
ferent method. We use the nonisotropic wavelet transfo
@9#:

f n~kk ,x,t !5E E E
2`

`

f ~y,t !)
j51

3

@k j
1/2gn„k j~yj2xj !…dyj #.

~D9!

Making use of the compatibility relation for Hermitian wav
let transforms@9#, the equation governing the wavelet tran
form of the Green’s function is

]Gn
d

]t
1n(

i
k i
3
]Gn

d

]k i
1~n11/2!n(

i
k i
2Gn

d

5d~ t2t0!Wn~kk!+d~x2x0!

5d~ t2t0!)
i

k i
1/2gn„k i~xi02xi !…. ~D10!
e

g

n

e

-
m

-

This equation can be integrated by the method of charac
istics @9#, yielding the solution

Gn
d~kk ,x,tux0 ,t0!

5H~ t2t0!)
i

F S k i

kn i*
D 2n21/2

kn i*
1/2gn„kn i* ~xi2xi0!…G ,

~D11!

equivalent to Eq.~D7! whenN51.
Therefore, the solution of Eq.~D1! in an infinite domain is

f n~k i ,x,t !5E
t0

t1

dt0)
j

S kn j* ~ t2t0!

k j
D n11/2

3Wn~kn* !+F rhs~x,t0!

1)
j

S kn j* ~ t2t0!

k j
D n11/2

Wn~kn* !+ f 0~x,0!

1nE
t0

t1

dt0 R dA0•@Gn
d~k,x,tux0 ,t0!¹0f ~x0 ,t0!

2 f ~x0 ,t0!¹0Gn
d~k,x,tux0 ,t0!] ~D12!

.

This reduces to the solution obtained by other methods@9# in
the absence of boundaries.

In conclusion, a fundamental relation exists between
Hermitian wavelets and the diffusion equation. The resca
wavelets, obtained previously@9# by the method of charac
teristics applied to source terms and initial conditions, are
fact Green’s propagators in an infinite domain. By super
sition of images@20#, the result extends as well to simp
finite geometries. The kinship between the diffusion Gree
function and the Hermitian wavelets explains that diffusi
processes appear so different when transformed with th
wavelets. In the rapidly expanding wavelet literature,
thogonal wavelets have become the widely preferred to
because of the economy of representation they offer; in c
trast, this paper points to analytical benefits available fr
Hermitian continuous wavelets.
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