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A Hamiltonian formulation is presented for the diffusion equation. Going beyond the conservation of
property in diffusive transport, conservation is shown to apply in the sense of classical Hamiltonian dynamics,
provided the equation is transformed with Hermitian wavelets. The characteristic equations, obtained previ-
ously for the wavelet-transformed diffusion equation, are the canonical equations corresponding to a time-
independent Hamiltonian. The configuration variables are defined by the canonical structure and its invariants,
while the momenta determine the evolution of the system. Irreversibility results from the finite-time escape of
trajectories, initiating from the smallest scales and eroding increasingly larger scales. However, this scale-
dependent erosion of initial conditions does not necessarily imply memory] 85863-651X%97)02902-4

PACS numbd(s): 66.10.Cb

I. INTRODUCTION invariants of the process. In Sec. IV, the Legendre transform
is used to construct a Lagrangian and the Hamilton-Jacobi
Formulations of diffusive problems come in several cat-€quation is spelled out. The results are generalized to
egories. The variational approach introduces adjoint fields, a-dimensional diffusion in Sec. V. A discussion and an in-
in [1—3], and is suitable for computational purpo§é The terpretation follow in Sec. VI, including a reference to
physical meaning of these formulations is more limited thanstrongly nonlinear systems.
in the canonical t_heprit_as, which can be divided into a glassi- Il. HAMILTONIAN FOR 1D DIEFUSION
cal treatment of inviscid flow$3] and a bracket formalism
[5,6] that includes dissipative dynamics. Let us denote by’ the field of interest and by its
The approach developed here represents an alternative opavelet transfornisee Appendix A for definitions and nota-
tion. To quote Salmof3] “Just as any non-Euclidean mani- tions). In [9], the diffusion equation
fold can be made Euclidean by embedding it in a higher

' . S . au'  Ju’
dimensional space, any non-Hamiltonian dynamics can be = (1)
. . ' . .. at 4 J 2
made Hamiltonia . . . . ” He wasreferring to the addition of X

the adjunct field, but his remark could preface the introduc
tion of the higher-dimensional wavelet space used here.
Several previous results by the present author were point- du 30U
ing in the general direction of conservative systems, with E+VK x* VK
continuous Hermitian wavelet transforrig,g] of the diffu-
sion equation as the critical first step. A brief summary ofThe wavelet numbek is a measure of inverse length scale,
relevant equations is presented in Appendix A[9h it was  analogous to the wave number of Fourier analysis and equal
shown that the transformed equation admits characteristicép the inverse dilation facta used in the wavelet literature.
implying that information propagates in the field in a recog-Following Courant and HilbeftL4], three of the correspond-
nizable way. The existence of characteristics is specific oing characteristic equation@vith a timelike parametes)
Hermitian wavelet transforms and goes beyond the classicahke the form
integral representatiofiLl0] or the use of Green’s functions

‘was transformed into the first-order wave equation

1
An+ 5

5 u=0. (2

[11]. In [12] (see Appendix D, rescaled Hermitian wavelets ﬂ =1 3
were actually shown to be the Green’s propagators for source ds ™
fields and initial and boundary conditions. [lb3], the vari-
ance of the diffusing property was also shown to be con- d_K:VKa ()
served(in the sense that the energy loss occurs by viscous ds '
transport rather than by dissipatjanthe first-order Hermit-
ian wavelet is used. and
Thus, it was apparent that Hermitian wavelets capture the du 1
dynamics of diffusion in a privileged manner, and this paper ds vi?| n+ 5 u. 6)

adds to the evidence. Starting with one-dimensiofidb)
diffusion, the Hamiltonian is constructed in Sec. Il, and the The propagation of initial conditions along characteristic
canonical equations are solved. Section Ill is devoted to théines implies a form of conservation that is consistent with
non-dissipative mechanicgf we imagine the relaxation of
an initial bump, the bump retains its identity as it spreads and
*Electronic address: jlewalle@syr.edu flattens out with constant area under the curve. The charac-
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teristic equation$4) and(5) track the spreading and the flat-
tening. The conservative nature of the diffusive transport of
velocity, vorticity, and other concentration, contrasted with
the dissipation of energy, enstrophy, or variance of concen- "o |
tration, is emphasized in many textbodkErom this per- '
spective, a Hamiltonian can be sought. The construction pro- .
cedure(see Appendix B and15]) applicable to first-order ®
partial differential equations relies on the interpretation of
certain variables as being configuration variables or their as-
sociated momenta. This is invalidated by the eventual obser-
vation that the Hamiltonian cannot be a bilinear function of =y -
the momenta and that consequendyand u must be the E e
momenta. To that extent, the discovery of the Hamiltonian 0.0 0.2 0.4 0.6 0.8 1.0 1.2

H(K,U,x,u)=vx’K—(n+3)rx?ul (6)

FIG. 1. Evolution ofx.

is serendipitous and is justified only by the consistency of the

analytical structure built on it. We note that the Hamiltonian

is constant in time and is homogeneous of degree 3 in th
momenta and of degree(in fact bilineay in the configura-

mptotic slope for the Hermitian wavelet transform of any
nction, as illustrated by thg, (Mexican hat transform of

. . — ei ax.
tion variables. '
A. Momenta i
v(Kk,X)=— 2wk 2’ e a®l2x? (13
Two of the canonical equations
dK &H 3 —n—1/2 .
TR TEL (7)  Asthex asymptote holds regardless®fit also holds

for any Fourier-expandable field. It should be noted that the
evolutions shown on Figs. 2 and 3 are representative of the
wavelet coefficients at each spatial location rather than of a
mean power spectrum. The diffusion of a given field is now

K2U (8) represented by the “flow” initiating from its continuous
spectrum of wavelet coefficients at each

and

du_aH_ +1
at _au_ Y\"T2

are the characteristic equatiortd) and (5). We denote

= n =u(x,0). Integration i iel re- . .
xo=x(0) andug=u(x,0). Integration as irf9)] yields, re B. Irreversibility, selective memory, and reconstruction

spectively, of the past
__ Ko Further interpretation of Fig. 2 shows that, at titge all
K(t) o T
\/1—21;K02t initial  spectral  contributions at wavelet numbers
k= k.= 1/\2vt, have vanished. The largeportion of the
and
(n+1/2)
_ _ 2¢\n/2+1/4_ T T
u(x,t)=ug(1—2vkgt) Ug K(t)) (10 )
°F E
The solutions are shown on Figs. 1 and 2. We see that for
any given initial scalecy, «(t) becomes arbitrarily large in a
finite time .
4
te( ko) = U(2vkg) KBV
oF . e
and that the correspondingvanishes at that time. This oc- “""-._‘
curs gradually for larger and larger scale components of the - "'-.“ R
initial conditions. Furthermore, the time dependencel é$ I L N
entirely captured by the relation 10° 10"

u(x,t) =v(x,k(t)), (12
FIG. 2. Mapping(dotted line$ of initial momenta(solid line) to
in agreement with our initial point of view that, the wave-  some future time, (dashed ling small scale(dashed line, large
let transform of a field)’ (x,t), is a function of« andx. The ) initial conditions are forgotten after a finite time, but can be
slope of the evolution line$¢Fig. 2) corresponds to the as- reconstructed by analytical continuation, as explained in the text.
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1 dlnu
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it 5
X 20=2{1_ _
ag'll(a € 2)

5
=In[u({1,x)]— E(g_gl)

+ 21 %(—Z)jl(ﬁ—zl)jazezgl
=0
5
:|n[u(§1,x)]—§(§—§1)

1 2 1 . _
] - Se Y S (=2) (- gy
E J:lJ'

U(t)/Umin

2
=In[u({1.x)]- gln(’%) - %(e‘zgl—e‘%)

5 K a2 1 1
=In[u({1,x)]— Eln(K—J + ?<;§_ 7)

(14

(b)

FIG. 3. Trajectories corresponding to the same initial (:onditionsWhiCh restores all truncated scales. By superposition of Fou-
as in Fig. 2, based ongUy=1 and(a) x;Ky=1 and(b) Eq. (19). - BY SUperp

The trajectories issuing from the dashed lifgnall scale, large n_er component; t.hls algquthm ca'n be |mplemgnted on f"‘”y

i) escape to infinity before timig ; those issuing from the curved given _f'eld' This IS cqn3|stent V_V'th t_he CI‘?‘SS'CaI Fourier

solid line generate the dotted time line. analysis of the diffusion equation, in which the scale-
dependent exponential attenuation can be reversed.

spectrum has been repopulated by propagation of the

. o . . . C. Trajectories
smaller« initial conditions, with the values of initially just

smaller thank, contributing to the asymptotic tail. At all The second pair of canonical equations
times, we keep a continuous spectrum witld Q<. How- d_K _dH PSS 1 U 15
ever, because of the scale-dependent attenuation described dt gk VK n 2 VKU (15)

by Eg. (10), the dominant scal¢e.g., corresponding to the

top of the spectral curve at each spatial locatieill gradu- ~ and

ally shift to smaller and smallet. du JdH
If we reverse the direction of time, only the “initial” dt - ou

values(solid line on Fig. 2 for k<« are recovered sponta-

neously. We can interpret this as a form of irreversibility, by are the equations for the trajectories. Substitution of E)s.

which one cycle of evolution and reverse evolution results inand (10) and integration make a simple excercise. We get

a truncation of the initial conditions. However, successivefirst

cycles of equal or shorter duration will not lead to further Ug

erosion of the initial field: irreversibility takes the form of a U=Uyg—. (17

one-time escape for each initial scale, equivalent to the u

abrupt truncation of the initial conditions surviving beyond aThjs shows that the produttu is constant, implying that as

1
n+—

> vi2U (16)

UgUo
koKo

given time. o u relaxes toward zero in a finite timg according to Eq.
In spite of this intrinsic irreversibility, the actual memory (10), U becomes ever larger. Furthermore, Etp) yields

of the small-scale initial condition&lashed lingis not lost. ' '

A reasonable extrapolation seems possible graphically; in- 1 ko |3 1\ ugUy kg

deed, the extrapolation to largers can be carried out by K=Koj|1={n+3 ) +{nt3 oK <D |

analytic continuation if all differentiability and convergence

criteria are met in the following. Let us use the transform of (18)

the Fourier moddEq. (13)]. A Taylor series ofu(k,x) so thatK collapses to the origin after timg . Accordingly,

aroundk,< k. in terms of{— {;=Ink—Ink,; gives the trajectories for the diffusion problem escape to infinity in
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U at vanishingK’s, while the momenta escape to larger andin which the original momentac and u are expressed in

larger «’s at vanishingu’s, all in finite time. terms ofK, K, U, andU. The Jacobian of the transformation,
The selection of anynonsingulay origin (KoU,) of tra-

jectories should not affect the solution of the diffusion prob- 9°H 1, L

lem as presented in Sec. Il.A. With regard to ELj7), there J=de omam| —4{nt+ 5| vikUs (24)

is therefore no loss of generality to assume that the same

value ofugU is used for all trajectories. For EQL8), two  does not vanish by virtue of Eq$17) and (9) until each
simplifying options impose themselves: we can assume thatajectory escapes at its owp.

the samexyK, applies to all trajectories, yielding Fig(&, From Egs.(15) and(16), it is easy to show that

or that the particular value

U 1/2
1) ugU x(K,U,K,U)= = (25)
Ko=|n+ 2| =2 (19 v(n+3) U)

2 Ko
. . . : and
is adopted as for Fig.(B). In this latter instanceK(t) be-
comes inversely proportional te(t) and the Hamiltonian 3 KU
[Eq. (6)] vanishes(up to an arbitrary constantClearly, the X -
mapping of the trajectories is quantitatively affected by these (K.U.K.U) (n+3) U 26
choices, but without any effect on their topology or on the u(k,u,Kk,u)= :
diffusion itself. 2y(n+3)vUU

Substitution into Eq(23) shows that the Lagrangian takes

l1l. INVARIANTS the form
Several invariants can be noted. First, it is clear that UK+ (n+2)UUK
.o 2
_ L(K,U,K,U)=— .
h=H 20 V(n+ HUPFAU
remains constant during the process. Specifically, the choice —2H(K U x(K.U.K.U).u(K.UK.U
of the configuration variables discussed at the end of the (KU x(K,U,K,U), u(K, U, K, D).
preceding subsection will fix the value bf for each trajec- (27)

tory. In general, this constant can vary from trajectory to
trajectory, i.e., bex dependent; the particular case of Eq.
(19) leads to a unifornH for all trajectories. A second in-
variant is found from the balance between the increase in
and the decrease im, in the form

L= U(t) ()12 (21) 5 J Ldt=0, (28)

A third invariant is

The LagrangiarL. is homogeneous of degree; in the con-
figuration variables and of degre® in their derivatives.
When this Lagrangian is associated with the variational
problem

it is staighforward to show that the Euler-Lagrange equations
La=u(t)U(t). (22 are identic_al to the c_haracteristic equati¢fsand(5) and to
the canonical equation§) and (8).
The interpretation of, is easiest: it expresses the balance Finally, the diffusion equation can be cast in the form of a
between the spreading and the magnitude of a “bump” unHamilton-Jacobi equation, following well-known procedures
der diffusion and can be read as an expression of “masst15]. From Eq.(6), we obtain
conservationl ; makesu andU reciprocals of each other, up
to a proportionality constant, and we will see in Sec. VI that a_s+ H( U ”7_5 ’9_5)
it can be interpreted as a definition df It can be noted that ot oK U
Eq. (18) can be obtained directly from E€p) as well as by

3 2
integration of Eq.(15) and will not yield an independent :(9_8 (9_8 — E ‘9_8 ‘9_8: 2

. f : 1 | c . . +vK n+ =|vU 0. (29
invariant. A fuller discussion of the invariants will benefit ot K 2 dK /] U

from theN-dimensional result§Sec. \) and is delayed until ) N ) o

Sec. VI. It is well known [15] thatftiLdt is the geodesic distance

between surfaces of conste®t, and2,.
IV. VARIATIONAL FORMULATION

The variational formulation associated with the canonical V. THE N-DIMENSIONAL DIFFUSION EQUATION

equations(7), (8), (15), and(16) follows from the construc-  Because the scaling factoks are not endowed with vec-
tion of an associated Lagrangian Let us define tor transformation properties, the summation convention is
H H suspended in the remainder of this paper. The wavelet-
oo 0 J transformed N-dimensional diffusion equation of an
LK UK U)=rgotugy —H, 23 M-component fieldy; takes the form
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JH IH,

Ko 5mkaTm. (40)

au; au; 1
I+V2K I+VEK n+2 =0, (30

analogous to Eq(2). The present author knows of no sys- with similar expressions fok,, derivatives, so that the Pois-
tematic procedure to generate thedimensional Hamil- Son bracket oH andH, vanishes,

tonian. However, with the requirement that the characteristic

equations corresponding to E@O) (see[9]) should be ob- [H,HJ]= 2 oH aH" ﬁ %_ ﬁ ﬂ
tained among the canonical equations, the generalization is K ‘9Km Ui duj  “m IKkm Ky
easy. We propose

oH aHk
2 m
1 au; aU
H(Kk,Ui,Kk,ui)ZE VKEKK_ n+§ VKEZ UiUi
k ! dxpm dK, duy;
-3 o~ e+ S g
m dt dt ~ dt
:§§|4k (31) | |
K K
X[ —v(n+1/2)k2Ui]- >, (— d—t"‘) 5mkd—tm
H is a Hamiltonian in the sense that the canonical equations m
du  oH 1 ) —23( )<—wn+uaxw]
E— ﬂ_Ui— + E Ui% Ky (32) i
=0, (41)
and
when the odd symmetry of Eq632) and (34) is taken into
dej oH 3 account. This yield¥N invariants of the type
E (9K VKJ- (33)

Ilk:Hk' (42)

are the characteristic equations férdimensional diffusion.  the “conservation equation” corresponding it
The definition of the “configuration variablest; andK; is
found in the other pair of canonical equations

a=u(OI «0)" (43
W M ek 2t s > uU; (34 |
dt gk UMT N3 VKig Uit B4 holds for each componemt but combines all spatial direc-
tions, consistently with our interpretation. Finally,
and
I3 =ui(H)U;(t) (44)
%: - ﬁ: n+ E VUiE Kﬁ_ (35) also holds for each component separately. A straightforward
dt au; extension of Eq(23), the N-dimensional Lagrangian is de-
. . ) . ) . fined as
Again the trajectories can be obtained by integration. We
have L(K's,U;,K's,Uj)
. — . _ 2 —-1/2 H 9H
Ki(t) = Kjo(1—2vkjet) ™% (36) _ f7_ o
2 Kk&K +E Ui au;
Kjo n+1/2
ui:uiO];[ (1_2VKj20t)n/2+1/4:ui01;[ (Kj(t)) ' :ZH(K,S,Ui,K’S(K,S,Uj,K’S,U]‘),
(37) ’ are
Ui(K S,Uj K S,U])) (45)
Uizuioﬁ, (3g) and a matching Hamilton-Jacobi equation, not spelled out
Ui here, follows naturally.
and V1. DISCUSSION
K —| Kk 1\ ZiuiUiol( «jo |2 1) Ziu;eUig In this paper, the diffusion equation is reformulated with
= ™Mo ”+§ Ko K;i(t) 2 Ki(t) the combination of purely classical techniques: canonical

(399  formalism, theory of first-order partial differential equations,
method of characteristics, variational formulations, harmonic
The invariants generalize those listed in Sec. Ill. Obvi-analysis, and its latest addition, wavelet transform. The key
ously, H is an invariant, but in fact each of thd,’s is  to the canonical formulation of the diffusion problem lies in
conserved independently. Indeed, the continuous Hermitian wavelet transform, which captures
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the phenomenon in a differefarguably simplerway. ply a memory loss, as long as the field is sufficiently smooth.
The combined spatial and spectral discrimination per- For the diffusion equation studied in this paper, the ad-
formed by the wavelet transform in E¢A2) rearranges the vantages of a Hamiltonian formulation are conceptual rather
physics of diffusion in such a way that the scale-dependerihan computational. Many effective methods exist to solve
local dynamics become conservative and correspond to e diffusion problem, and the doubling of independent vari-
strict variational problem. The conservative nature of theables associated with the wavelet transform hardly goes in
system can be traced to the existence of characteristics, itsdlie direction of increased economy of calculation. However,
a consequence of the compatibility relat{@y. (A3)], andis  at the conceptual level, a number of surprises are notewor-
conceptually related to the Green’s function propagation othy: the definition of a configuration spakeU in which the
initial conditions: both artifacts of the wavelet transforma- canonical formulation is valid, the formal manipulations as-
tion. The space variable although part of the wavelet space sociated with a simplectic structure, and the emergence of
and implied in all wavelet-transformed equations, plays onlythe Hamiltonian as an evolution operator for diffusion, both
the role of a parameter in the absence of convective effect# the deterministic sensgdamilton-Jacobi and in the sta-
Elementary dimensional considerations are in order. Sinc#stical sensdsee, e.g.[18]), all enrich our knowledge of a
the diffusion equation is lineay’ can stand for any of the classical problem.
temperature, velocity, or concentration fields encountered in Finally, the strong focus on linear diffusion adopted in
many problems; let us denote its dimensionsbyThen it this paper should not be perceived as an exclusion of strong
follows from Eq. (A2) thatu has dimension®L Y2 Re-  nonlinearities. Hamiltonians for the Burgers equation and the
gardless of the particular field at hand, the diffusion coeffi-Navier-Stokes equations are discussed in Appendix C and
cient v has dimensions.2T~2. Then, in order to have a are the object of continuing work. The hope there is that the
dimensionally consistent Hamiltonia# in Eq. (6), K must organization of turbulent flows around coherent structures
have dimensionk inverse of those ok, andU have dimen- Might emerge in the newly defined phase space. Obviously,
sionsLY?D ! inverse of those ofi, except for an arbitrary thel complexities o_f the convolutions ir_1 wavelet space present
dimensional factor common to bok andU. Taking every-  difficulties of their own, but the existence of tool.g.
thing into account, assuming this common factor to be difenormalization applied to critical pheonmenaaking use
mensionlessH has the same dimensions as the growg, ©f Hamiltonians for complex systems offers some hope of
i.e., T~L. This is consistent with the Hamilton-Jacobi equa-SUccess. In conclusion, we have derived a consistent frame-
tion (29) when the Jacobi functio8 is dimensionless. There- WOrk in which to study diffusive processes.
fore,H emerges as the evolution operator familiar from clas-
sical and quantum mechanics. ACKNOWLEDGMENTS

The physical meaning of the Hamiltonian can be deter- , .
mined in conjunction with the invariants of the process. For This paper was completed while on leave at the CEAT/

clarity, one can emphasize first that the Hamiltonian definedtEA, With partial support from the Universitde Poitiers,
by Eq. (31) is not of “energy” type and is unrelated to CI\_IRS, and Syracuse University. R. Sadourny was quick to
Salmon’s cases of diffusive motiof3], the dissipative point out that the wavelets used here are Hermitian rather

bracket formalisnf5,6], or the conservation of energy under than Gaussian.

g, transform[13]. Among the invariants, th® |,;’s can be

interpreted as the conservation of “mass” under diffusive APPENDIX A: HERMITIAN WAVELET TRANSFORMS

transport, a well-established idea. The other invariants offer

the following pattern: we havhl 1,,’s, from which theK'’s

can be obtaineg@as well as from their respective differential

equations and theM I4;’s are simple algebraic relation be-

tween the configuration variabléthe U’s) and the momenta

(theu’s) appearing in relation to the original problem. Thus,

in numbers and analytical content, thg andl 3; invariants q

can be interpreted atefinitionrelations for the configuration __ - _ -l

variables, just as Eq$35) and (36), from which they were 9n() d§g“_1(§) where go(¢)=e ™. (A1)

derived, were regarded as definition equations for the same

variables. One can note that the definitions themselves afeor n>0, the Hermitian wavelet transform at scateof a

part of the Hamiltonian structure, so that the configurationvelocity u(x) follows from the general definition and reads

variablesU andK are fundamentally different from the ad-

joint variables in the restricted variational approaches of o

[2,1,16,17 and others mentioned if8]. This explains why U(KvX)=Kl/2J u’(y)gn(k(y —x))dy. (A2)

only the equations for the momenta are needed to solve the o

diffusion equation: the configuration variables play no dy-

namical role other than completing the canonical structure.
Within the Hamiltonian structure, a peculiar form of irre-

versibility was discoverd in Sec. Il. The decomposition of

the field by continuous Hermitian wavelets corresponds to a )

scale-dependent escape time. As noted in Sec. Il, the gradual gou o

. A . . K —+—=+
scale-dependent erosion of the initial conditions does not im- K Ox°

It was shown by Menevedud 9] that the wavelet transfor-
mation(see[7,8]) can be applied to the Navier-Stokes equa-
tions. Then, the present auth®] made further progress by
using Hermitian wavelets, i.e., wavelets obtained recursively
as derivatives of the Gaussian bell cuyg

(,x) will be referred to as wavelet space and>0) as the
wavelet number. Integration by parts and the Hermite recur-
sion relations yield the compatibility equation

1
n+ -

2 =
5|« u=0, (A3)
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which removes some of the redundancy associated with doumake it clear that can be adopted as the independent pa-
bling the number of independent variables. rameter. Then, the Hamiltonian reduces to Ej.

The properties of the transform used in the previous sec-
tions can be generalized d dimensions if the transform is  APPENDIX C: EXTENSION TO NONLINEAR PROBLEMS
carried out in each Cartesian direction independently and if o i )
the same wavelet index applies in each direction. Accord-  Whatever simplifications wavelets can bring to linear
ingly, the N-dimensional wavelet transform of the velocity problems do not extend to nonlinearities. The convolution of

field u;(x) is guadratic terms has been studied 19,9 and presents defi-
nite disadvantages relative to the Fourier decomposition, par-
u-(x’sxt)=f j“ Ul (y,t) ticularly i_n the treatment of pressure in incompres.sible flows.
: o e These disadvantages may be offset by the existence of a
\ canonical structure, and this appendix shows that a Hamil-

12 tonian formulation of nonlinear dissipative systems is pos-
X1 [ gn(ii(yj = Ddyjl. - (A9 sipje.
: As in [9], the Burgers equation

It can be noted that; is a set of positive scaling coefficients o’ o’ U’
and is not a vector. This fact is reflected in the notation, —tu —=v—
where s will be avoided, and where the summation conven- Jt X oX
tion does not apply ta; . The N-dimensional compatibility
equation assumes the form

du; Ju; 1
304 i
5 4+ — 4+ | n+ =
7 Ki dK ; &ij ( 2

(CD

provides a good stepping stone toward the Navier-Stokes
equations if the nonlinear terms are treated as source terms.
5 The convolution is greatly simplified if the Hermitian wave-
E kjUi=0. (A5) let is of even order, in which case the simplifying expression

. holds for the inverse transform:

APPENDIX B: CONSTRUCTION OF THE HAMILTONIAN U (x,t) = yr,(—lfzu(,(,x,t)d,(, (C2)
0

The construction of a Hamiltonian for diffusion follows
the general presentation of Rugke[15], pp. 60—63. As-  where

sume that the solution is implicitly given by a relation of the 1\M2 1 1
form =l-z| ———=—. C3
Y ( 2) V27 T(n) ©3
z(t,x,u(t,x))=0. (B1)
] . Then we can write
Then define the variables o o
0z U/Z(X,t): ’}’Zf f (KlKZ)_llzu(Kl’Xrt)u(KZint)dKldKZ
T= e (B2) 0Jo
o =C(x.b), (C4
K=—-, (83) . . .
Ik so that the convolutiol© combines contributions from all
scales at each location. Upon wavelet transformation, the
and characteristic equation7) remains unchanged and the
Jz wavelet-transformed nonlinear terms must be added to the
U= au (B4) right-hand side of Eq(8), which is replaced by
du oH 1),
Let EZEZ—V n+§KU
H(K,U,T t) UF(t ! K) (B5)
U ku,t)=— yK Uy — —,— — . 1 9 o
v —55( | ch<x,t>Kl’Zgn(K<y—x>)). (5
0
Rund shows thaH is a Hamiltonian for some timelike pa-
rameterr. In the case of Eq(2), we obtain Therefore, when we write the Hamiltonian as
H(K,U,T,x,u,t) =T+ vx’K— n+£)w<2uU (B6) 1
T 2 ' H(K,U,k,u)=vk3K—-U n+§ vi2U

Two of the canonical equations, namely,

U g
dt oH 2 9x

fdeC(x,t)Kllzgn(K(y—x))) ,
E’I ﬁzl (B7)

0
(Co)

and the first pair of canonical equations gives E¢8.and (C5),

d_T: _ ﬁzo @8 SO that the Burgers equation is derived fréin For the as-
' sociated configuration variablds and U, defined by the
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other pair of canonical equations, it is not clear how the APPENDIX D: HERMITIAN WAVELETS
and u derivatives should be carried out. This issue will be AS GREEN'S FUNCTIONS
examined elsewhere. Regardless of how it is resolved, the
Hamiltonian now includes nonlocal contributions, spanning
all k's and a corresponding window of nearlys, which
makes a variational formulation unlikely.

No new complications are introduced by considering th

Another profound relation between Hermitian wavelets
and the diffusion equation is illustrated hdfehis material
was presented as part pf2].) In the presence of a source
efield, the diffusion equation takes the form

incompressible Navier-Stokes equations. Let us define of 9%
E_ Va—)(izz(brhs. (Dl)

Cii(x,t)=ui (x,HHu (x,t)

o o The fieldf(x,t) is determined by a combination of the source
= yef . J IT [dxqpdro Kok M3 field ®,,s and suitable boundary and initial conditions. The
0 0 k Green’s-function formalisnj11] captures concisely this de-

X Ui (k1S X,1)Uj( k58, X,1) (c7 pendence:

and its wavelet transform f(x,t)= ftHdtOJ dVoGY(x,t|Xg,te) P e X0 to)
0
Cu<f<'syx,t):f: "ficcili +f dVoGd(x,t|xo,O)f°(xo,O)+vftHdto
0
* L1 Tdyire®gn(riyi=x)]. (C8) « 35dAO,[deof(XO,to)_f(XO,tO)VOGd]
(it rese s, e peveeL o med ese 00— Gttt -G, (0

as
where ¢ stands indifferently for sources or initial or bound-

p J (o ary conditions, an@{ is used as the integration kernel or the

—=-> > e I dsGim(xk(S), 1) integral operator.

p boom Thm TS Let us focus on one-dimensional diffusion first. In an in-
finite domain, the functiolG¢ is

XH (1_28KE)I’1/2+1/4 (Cg)
k Gd(X,t|Xo,t0)
and the characteristic equation for velocitybecomes M-t 1 [{ ( (X_XO)ZH
du; 1 1 dp P Vadmv(t—tg) 4v(t—to)
=V n+—ui2 Kﬁ_—__z _C”
ds 2 K p IX T OX; « K2(X—Xo)2
(C10 =H(t—t —Vexp{—<v—> D3
With these expressions, the Hamiltonian governing Newton- ] ) )
ian incompressible flows is when we define a time-dependent inverse length sealas
H(K's,U; ,«’s,u;) k,=[2v(t—tg)] 2 (D4)
1 The Green’s function is thus identicdbr t>t,) to the “ba-
=1, kiKy— n+ 5 v VUi w? sic solution” as presented in Widdgn0]. Furthermore,
K : K Widder’s presentation of differentiation, integration and con-
9 9 9 9 volution of the basic solution established the link between
— i—Cii— —— the Gaussian bell curve and the Hermite functions, and the
Z 2 U'axj Cij 2' ; ; U'axi X IX;

diffusion equation.
0 This appendix goes one step further, by showing that for a
xf dsqm(Kk(s),x,t)H (1—2sk2)M2+1/4, (multiscale resolution of the field in terms of Hermitian
- k wavelets, the same family of wavelets serves as functional
(C1) basis, as convolution kernednd as Green’s function. The
wavelet transformation is defined for real wavelets such as
Starting from Eq.(C11), the charactersitic form of the gn by the equatior9]
Navier-Stokes equations can be derived as one pair of ca- .
nonical equations. As in the case of the Burgers equation, th _ o _ 172 _
definition of the configuration variables remains to be eIuci-?”(K’X't) Walr)e F(x.t) f—wf(y't)K On(i(y=x))dy.
dated. (D5)
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Because of the existence of an inverse transf¢see[7]),  This equation can be integrated by the method of character-
the f,’s can be interpreted as a local spectral decompositiofistics [9], yielding the solution

of the field f. The wavelet transform is now applied to the

solution given by Eq(D2). It is straightforward to verify that

GA( kKX, t[Xo,to)

W, (k)0 f(X,1)=Wp(k)o | GI(X,t|Xq,to) (Xt \-n-112
(r)o F(x,t1) (K)f (X,t]X0,to) ¥(Xo,to) =H(t—to)H [(%) K12 (1t (%= Xio)) |,

vi

=f [Wh(K)°G(X,t|Xg,to) ]¢h(Xo,to) (D11)

=[Wy(x)°G%Jeyh=GR(x)oy. (D6)
equivalent to ED7) whenN=1.
The propagatOIGﬁ in the transformed space is defined by  Therefore, the solution of E@P1) in an infinite domain is
Eq(D6), and is calculated to be

K* n+1/2 t+ K*-(t—t) n+1/2
G(x) =Wp(k)e Gd:Hﬂ‘%)(%) Wi (&3), folkix )= | dtg]] (VJTO)

t i i

(D?) 0 ]
XWn(K:)OCDrhs(thO)

with
Kt](t_to) n+1/2 . o
I [ =] Wa(x})e f2(x,0)
KK, K i Kj
K (D8)

\/K2+K12, \/1+2v1(2(t—t0). t+
+ Vf dto fﬁ dAg-[GY(x,%,t|Xg,to) Vof (Xo,to)
Therefore, we see that the solution of the diffusion problem fo
is a rescaled wavelet transform of the source field and of the —(Xo,t0) VoG k.X,t|Xo,to)] (D12)
initial and boundary conditions.
The N-dimensional result can be obtained also by a dif-’
ferent method. We use the nonisotropic wavelet transform

[9]:

This reduces to the solution obtained by other metti&dim
B 3 the absence of boundaries.
_ 12 In conclusion, a fundamental relation exists between the
ol xt) f J f—wf(y,t)jlzll L 0n(r (v =% )y, . Hermitian wavelets and the diffusion equation. The rescaled
(D9)  wavelets, obtained previous[@] by the method of charac-
teristics applied to source terms and initial conditions, are in
Making use of the Compatlblllty relation for Hermitian wave- fact Green’s propagators in an infinite domain. By superpo-
let transformd 9], the equation governing the wavelet trans-sjtion of images[20], the result extends as well to simple
form of the Green’s function is finite geometries. The kinship between the diffusion Green’s
function and the Hermitian wavelets explains that diffusion

0Gg+ Vz K?ﬁ+(n+1/2)v2 KiZGﬁ processes appear so different When transformed with these
at i kK, i wavelets. In the rapidly expanding wavelet literature, or-
thogonal wavelets have become the widely preferred tool,
= 6(1—to) Wh( ki) 8(X—Xo) because of the economy of representation they offer; in con-
trast, this paper points to analytical benefits available from
=8t—to) I «gn(ki(xio—x)). (D10)  Hermitian continuous wavelets.
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